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LEAST ABSOLUTE VALUE ESTIMATORS I
FOR ONE-WAY and TWO-WAY TABLES 4

by ‘1: .
R. D. Armstrong
E. 1. Frome

This paper concerns itself with the problem of estimating the .~~~

parameters in a one-way and two-way classification model by minimizing .4
the sum of the absolute deviations of the regression function from the

observed points. The one-way model reduces to obtaining a set of medians

from which optimal parameters can be obtained by simple arithmetic mani-

pulations. The two-way model is transformed into a specially structured

l inear progranining problem and two algorithms are presented to solve this

problem. The occurrence of alternative optima l solutions in both models I
is discuss~~,~ and numerical examples are presented. I

4~

_____________________________ I
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1. INTRODUCTION

An important problem in statistics is to study the effect of one or two

factors on a dependent variable. This problem can be formulated as a regression

analysis using duniny (0,1) varIables to represent the levels of the factors,

and the resulting least squares analysis (LSQ) is wel l known [291 . Recently,

the least squares approach has come under considerabl e criticism , and severa l

resistant estimation procedures have been proposed [ 1 , 19, 20 , 21 ,22 ]. Along

with the resistant estimation techniques has come an increased computational

burden , and in some cases subjective decisions concerning outliers [14,27,31]

weight functions [6], and score functions [21] must be made by the statistician.

Minimizing the s~s~ of the absolute val ue of the residuals is a robust procedure

[19] which in some cases bypasses the latter difficulty . The computations

Involved in obtaining least absolute value (LPV) estimates have been a major 
.

. 
-
~

deterrent to its use. This paper will demonstrate how LAV estimates can eff i-

clently be obtained for one-way and two-way tables. A second difficulty In LAV

estimation is the existence of alternate optimal solutions. For one-way and two—way

tables alternative optimal solutions will frequently exist. However, a un ique

solution can be obtained by placing appropriate restrictions on the parameters.

From a data analytic point of view this may be regarded as an advantage since it

requires some careful thought in selecting additional contraints that will yi~ Id

• a “good” solution. In some situations this simple row-plus-column fit provides

a first step In data analysis. The fitted values and residualls are used to

identify possible outliers or to suggest how an improved fit may be obtained

(see e.g. [1], [6)). The LAV estimates will also provide a good starting point

for resistant procedures that are iterative and require residuals from an
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initial fit to initiate the procedure.

Charnes , Cooper and Ferguson 1 12] appear to be the first to present a

practical approach to solve the general linear LAV problem. They demonstrated

how the problem could be transformed into a linear prograimli ng problem and

thus solved by using the well developed theory of linear prograni~ing (LP).

They also proved the statistical consistency of the estimates for LAV or any

other norm-functional . Other papers primarily concerned with the use of LP

to solve LAV problems are [2,4,5,28,31 ,34 ]. The main point to be gleaned

from the more recent of these references is that a special purpose primal

simplex algori thm has proven to be the most efficient method for solving linear

LAV problems. A reasonable alternative to the special purpose primal algorithm

is to take the dual of the original LP problem and solve it via an LP code with

simple upper bounding . Section 3 outlines this transformation for a two factor L
model while Wagner [32] gives a more detailed presentation for the general case.

Computational results [3] indicate that the dual approach takes approximately

four times as long as the special purpose primal algorithm , but the algorithm

for solving the dual has the definite advantage of being more widely available.

In Section 2, we demonstrate how LAV estimates can be obtained for a one

factor model without LP. In Section 3, two computer-oriented approaches for the

anal ysis of a two factor model using LP are presented. Both methods exploit the

topological structure of LP probl em to provide efficient solution techniquesr• Section 4 presents sufficient conditions for alternative optimal solutions to

exist when additional criteria are not present. Examples illustrating LAY es-

• - • timation for one-way and two-way tables are given in Section 5.

I -~~ -- -- - -— - - — —~~~ — _ _
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2. ONE-WA Y CLASSIFICATION MODEL

Suppose it is hypothesized that observed values of a random variable

are affected by t levels of a ~.ertain factor. A statistical model to study

these ef fects may be stated as follows :

~
‘ik 

= + T~ + el k  ~~1, 2, ..., t; k = 1, 2, ..., n1, where 
~
‘ik is the

k-th observation at the i-th level ,ijis a typical value , r~ is the effect

• associated with the i-th level and e.k is an unobservable random “error.”1

4
. The LAV estimates for ~i and t 1, i = 1, 2, ..., t by definition solve

the following problem :
t n.

Minimi ze z = E E 1 
‘~ ik - + T .~ ) J  (2 1)i=1 k=1

An in,nediate difficulty arises because we have one degree of freedom in

choosing values for the parameters; that is , 
~
i or any one of the T 1

1 S

may be assigned an arbitrary value wi thout affecting the optimal value

of z. The same difficulty arises in LSQ estimation , and is averted by

assuming that the total of the effects should be zero. Thus, the degree

of freedom is absorbed by the constraint:

t
E r1 = O  (2.2)

1=1

In a LAY anal ysis , this degree of freedom must also be removed by

an additiona l constraint , but now the form of the constraint is not so

obvious. To see this , consider the t disjoint problems:

n
Mi nimize E1 1

~ik — a1 ( ,  I = 1, 2, ..., t, (2.3)
k=1

1~ 
where = 

p 
+ r1, I 1, ..., t. 

—— —-•~~ - . -• ,- —-• —--~~-- - — - —--~~~ rn .- -, - -
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An optimal value for a.1, say & .~., is the median of the points 
~jk’ 

k=1, 2,

n1 . It then follows that if we were using (2.2) as a constraint on the Ti
’s,

the optimal solution would be:
t

~ a. )/t (2.4)
1=1 ~

and = - ui,i l,2,...t. (2.5)

The j
~ 
given by (2.4) is the arithmetic mean of t medians. One reasonable

alternative woul d be to choose j~ to be the median of all observations , but

to parallel the LSQ analysis as closely as possible , we take a different

approach . First note that (2.2) is equivalent to taking up the degree of freedom

by choosing ~
j and T1, 1=1 , 2, ..., t so as to minimize

t t
E E

1=1 •I=1 ‘

while still providing LSQ estimates. Correspondingly, to obtain parameters

for the LM estimate we minimi ze

t t

j E = E (2 61=1 1=1

while maintaining the minimum value for z.

When the optimal value of a~ is unique (i.e., the median of the points

k=1 , 2, ..., n, i s uniq ue) for all i , ~ is the median of &~, i=l , 2, . ..,  - •

t and is obtained from (2.5). However, frequently the median of the Yik ’S

is not unique but rather can lie anywhere within a continuous closed Interval .

When thi s i s the case , ~i can be obtained as follows.

Step 1. Set U equal to the smallest lower bound of the Intervals within

which the optimal value of the ct.’S must lie (unique values have the same upper

and lower bound.)

A
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Step 2. Increase the value of U until any further increase would place

more intervals completely below U than there are completely above Ii.

Step 3. Place I equal to the current value of U.

Step 4. Decrease the value of L until any further decrease would place

more intervals completely above I than there are completely below L.

All the values in the closed interval EL , U] are optimal for ~.i subject

to the additional cri terion (2.6). Let denote the median of all the
*and choose the point in [L, U] that minimizes p— ~i . This cr iteria

1- provides an estimate that is as close as possibl e to the estimate of ji that

is obtained under the minimal one parameter model (i.e. under they hypothesis

that a l l  the t1 s are zero). A similar procedure will be used in obtaining

estimates of the parameters in the two factor model (see section 5). Once

p has been chosen from w ithin thi s interval , 
~ 

is chosen to be as close to

p as possible while remaining in the range of optimality for (2.3). The

are then determined from (2.5).

This LAY estimate is unique. Although the additional criteria that were

added to force a unique solution are arbitrary , they are reasonable for this

situation . Other approaches, similar to this goal progranining (constrained

regression) approach [ 8, 9, 11 , 24 1 proposed here, can be used to define a

• ~ unique optimal solution or we could let p = (I + U)/2. Unless these additional

cr iteria are rather comp lex , LAV estimates are easily obtained for a one-way

• table. However, as we shall see in the next section, the extens ion of the LAV

approach to two—way tables is far more complex than the corresponding LSQ

extension.

• I,.. -

L ~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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3. TWO-WAY TABLE

3.1 Definition of Model

A two factor model arises when a second factor is introduced as follows:

~
‘ijk = 1~ + t .j + 

~j 
+ ~~~~ 

~ :::: ~k=l , ... , n~3
.

Thus , 
~ijk 

is the k-th observation at the i-th level of the first factor and

the j-th level of the second factor; t .1 represents the effect of the i-th

level of the first factor (i.e. row effect), represents the effect of

the j-th level of the second factor (column effect), and p is a typical

value. L~ estimates of the parameters are obtained by solv ing the follow ing

probl em:

Minimize z = ~~~~~~ ~~~~~ ii 
~iJk 

- c’.’ + ~~~ + ~~
.) . (3.1)

There are two degrees of freedom in assigning values to p, t
j~~ and

thus , restrictions should be added to the problem . In the corresponding

LSQ analysis (2.2) and

= 0 (3.2)

are appended . This is equivalent to providing LSQ estimates which minimize
r 2 c 2E
~~ 1 r .~ + E~~.1 ~~

Analogously , in the LAY analysis we provide estimates that minimize

E~~1 It .~ I + E~~ 1 B~’ (3.3)

subject to the optimal value for z in (3.1) being maintained . As in the

-
‘ 

one-way analysis , this additional criterion does not necessarily provide a

un ique solution (see Section 5 for an alternative). Further restrictions,

or a completely different set of cr iter ia , may determine a unique solution.
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Our purpose is to present what we feel are reasonable conditi ons for LAD

estimates to satisfy.

3.2 Computationa l Approaches -Before (3.3 ) is considered , two computer oriented approaches to obtain

an optimal solution to (3.1) will be discussed. We again make the transfor-

mation a1 = 
~ + T1, and restate (3.1) as:

Minimi ze z = EIEJ
Ek I 

~i~k — (a1 + 
~~~) I,  (3.4)

Problem (3.4) can be written as a linear programing problem

Minimi ze EjEjEk(d
~jk 

+ dijk)~ 
(3.5)

subject to:

d
~jk

� O s d jk � O
~

1=1, . . . , r; j= 1, . .. , C; k 1,  . . . , n1~ ,

where 
~~j k and djjk are the positive and negative deviation of the regression

4 equation from the observation 
~ijk’ 

respectively. Problem (3.5) is not

tractable in its present form for a direct application of the simplex algorithm.

The main reason for thi s is that the number of constraints is equal to the

number of observations which may give rise to an excessively large basis

matrix. This difficulty can be overcome by taking the dual of (3.5) whIch is ;d -
~~~

given by:

Max imize EIEJEk ~IJk ~iJk (3.6)

subject to:

E
J
Ekrrijk 

= 0 , 1=1, . ..,  r;

EjEktr1jk 
= 0 , J=1 , ..., C;

~ ~1jk ~ 1 , 1 1 , . . .,  r; j 1, . .. ,  C; k1, ...~~ n1j.

I _-~~~~~ - -~~ - - • - —~ —- - —• -- ---~ -~~~~~-~~~ •~~~~~ .-— -
~~~~~~~~~~

- 
~~~~~~~ - -rn .- - -
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By making the transformati on iT
~ij k  

= 

~ijk  + 1 (3.6) can be written in

a more standard linear programi ng format

Maximize EIEjEk ~‘ij k ~~ij k  - 

~1j k ~’ 
(3.7)

subject to:

= ~~~~ , 1=1, . . .,  r,

EjEk7r~jk 
= E1n1~ , j 1 ,  . . .,  C,

and 0 
~ ~ijk  ~ 2 , 1=1, . .. ,  r; j=1, . ..,  C; k 1 , . . .,  n

~~
.

It can now be recognized that (3.7) is a capacitated transportation

problem (10] wi th r origins and c destinations except that, because of

multiple observations wi thin cells , there i s more than one path from origi n

I to destination j .  Thi s extension can be incorporated into the standard

IP algorithm by only considering 7T
~Jk

S for entry into the basis when all

other LP variables corresponding t~ observations in cel l (i ,j) with a value

• larger than 
~ijk 

are at their upper bound. Computational results [15,161

indicate that transportation problems can be solved approximately 150 times

faster by using a special purpose primal simplex code as opposed to a general

purpose state-of-the-art LP code. Thus, considerable savings can be derived

by recognizing the special structure of (3.6).

Once (3.6) has been solved , optimal values for the cx 1s and B.s in (3.4)

are given by the dual variables or simplex multipliers for the first r + c
*1 constraints. There is , however, one degree of freedom In choosing the a. S

and 8~
’ S 5 and a second degree of freedom in assigning values to the

and p. These degrees of freedom can be taken up by satisfying

criterion (3.3). We delay the discussion of how to accomodate (3.3)

until after the prima l approach to (3.5) has been presented.

- —~~~~~~~~ _ _ _  - -— -  - -~~~~~~- -~~~~~—~
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For the general problem of obtaining parameters for absolute devia-

tions estimates , it has been shown [3, 4, 30 1 that solving the general

case equivalent of (3.5) directly wi th a special purpose primal algori thm

is computationally the most efficient approach available. There is no

reason to believe that this would not also be true here as the structure
- - of the problem can still be utilized to perform the operations of the

algorithm without ever inverting a matrix explicitly. This algori thm,

modified to take advantage of (3.5)’s structure, will not be developed

here, but a brief overview is given to indicate the use of techniques found

in solvi ng transportation problems and to state a formula required in the

next section.

We begin by restating the constraints of (3.5) in matri x notation as

fol lows :

Ay - Y - D ~~+ D = O , (3.8)

~ 0, 11 � 0, (3.9)

where y = (a1, . . . ,  a~,, ~~ 
- . . ‘  8~

), and A is an (E 1E~n 1~) by (r+c) matrix

of 0’s and l’s with a single dependent column . It is clear from the objec-

tive function of (3.5) that (3.8) can also be written as:

Y - D ~~�A y~~ Y + D .  (3.10)

The algorithm at any stage works wi th a bas is consisting of (r+c-1) rows of —

A. To distinguish between the basic and nonbasis rows of A we partition
A , Y , D~, and D , and rewrite (3.10) as

B 
~~ ~b ÷

~n f~n N

-

- 
where B denotes the basis and N the remaining rows of A. If we let A = By,
then the constraints (3.8) 6ecome

—~ — • — •~~ - —---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -  — —
~
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• 
Y

b
D

b
� A

~~~~~
Y

b
+ D

b

~~~~~~~~~~~~~~~~~~~

where B# is a generalized inverse of B. The current solution is A~ = Y b
= D~ = 0, y~ = B#A*, and the deviations in the nonbasic rows are as small

as possible based on X* and the constraints . The structure of B allows it

• to be stored as a spanning tree [15] similar to that of the basis of a

transportation problem. This allow s us to use the triangulari ty of B (after

a dependent column is dropped) to solve By = A wi thout explicitly obtaining

a B#. Thus , B# is not required to obtain a basic solution ; and, in fact,

is never needed.

The next step in the algorithm is to determine if an increase or

decrease in any A~ away from its current value will decrease the objective

val ue. The objective function rate of change is 1 + or 1 - 0
~ 

when A .~ is

increased or decreased, respectively, where e = (ei, 02~ 0y,.~ _~) is

gi ven by

0 = E N ~B~ — E N ~B
# 

= (E~N~ 
- E N

J
)B#

or GB — E N ~ - E N~. (3.11)

In (3.11) the + and - superscripts indicate sumation over rows of N with

positive and negative deviations , respectively, When a nonbas ic row has a

zero residual it is classified by the algorithm as a positive or negative zero;

thus, every nonbasic row will be included exactly once in the above

sunination . Again the triangularity of B allows us to obtain 9 without

B# (just as in the transportatii n algorithm a primal solution is obtained)

• Equality (3.11) wIll be important in the next section where conditions for

al ternative solutions to the IP problem (3.5) are discussed.

~~~~~ :1
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Since we are minimi zing the sum of the absolute deviations, a basis

change would be made if Jo~ > 1. Hence, the curren t solution is recognized

as optimal when 1
~i

1 � 1, 1 = 1, 2, . . . ,  r + c  -1 .

The pivot rule of Barrodale and Roberts [4  J which may combine several

standard simplex pivots into one is used to determi ne the row of N to enter

the basis. The details of implementing this rule while effecti vely utilizing

the structure of B and N will not be given here, but the major computat ional

step is similar to calculati ng the ratio in a dual simplex transportation al-

gorithm [fl].

t

-~~ ---—--— - - — • ——-— •-- - —.--—
~

- -—
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3.3 A Secondary Criterion for Choosing the Parameters Estimates

The remainder of this section will be devoted to describing how the secondary

criterion (3.3) can be considered wi thin the framework of an LP algorithm . The

procedure can be utilized on a revised version of (3 .5 )  or (3.7), and i s simi lar

to the perturbation method of Charnes [ 7  J . Like Charnes ’ method an arbitrari ly

small positi ve number ~ will be used in the description , but the most efficient

implementati on would never assign a value to c and all calculations involving c

are performed implicitly. However, by placing s equal to a specifi c value addi-

tional computer coding is avoided . We begin by noting that (3.3) can be expressed

in  LP form as
r+c + -

M i n i m i ze Z~~1 (
~ j + o~

)
~ (3.12)

subj ect to:
+ -

t~ - S 1 + o .~ = 0  , i=1, ..., r

- 

~~
-+

~ 
+ = 0 , j= i , . . . ,  c (3.13)

• ô .~ � 0 and � 0 , j= l , . . .,  r+c ,

+
where cS

~ 
and are the positive and negative deviations of the effects from zero .

Problem (3.12 ) is only of secondary concern , as we wish to always obtain

an optimal solution to (3.5). The desired optimal soluti on is given in a limiting

sense (c-~O ) by solving
+ - r+c + -

Minimize  EiEJEk (diik + dljk) + E
3...1 

(ct5~ + c6~) , (3.14)

• subject to the constraints (3.8), (3.9), and (3.13).

Problem (3.14) is not in the form where the column s have the exact structure

that the rows of a transportation problem possess. To obtain the desired format

let 8c+1 = —p and create a “dumy parameter” 8c+2 (this is a variable in the LP

I~ L~~~ - — — -~~~-—.~~~ -~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -• - --—--~--. ~~ —--•-— 
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problem). The problem then becomes
+ - r+c + -

Minimi ze Ej Ej Ek (dijk + djjk) + E~..1 (€45 . + ~t5 . ) ,  (3.15)

subject to: 
+ -

+ 8
j  

- 
‘~‘i j k  

- dijk + dijk  
= 0, 

~:~::~: ~:
+ — 

k=1,...,

a1 + 8c+1 — t5~ + = 0 i= 1,..., r,

+
8c+2 + 83 45r+j + 45r+j = 0 , j = 1, , c, k 1 , 

‘

-~~~~

• where the degree of freedom in assigning values to the parameters Is absorbed by

always placing 
~c+2

The algori thm described to solve (3.5 ) directly can be used to solve (3.15)

wi th a slight modification to account for a weight of c, rather than one, on the

deviations of and away from zero . Also , by taking the dual of (3.15) and

by making the lower bound on the variables in this dual problem zero, a capaci-

tated transportation is again created. This can, of course, be solved wi th a

standard code ; however , care must be taken to ensure 8c+2 = 0 when working back 4 -
H to the optimal solution to (3.15).

The formulation j ust descri bed takes care of the two degrees of freedom at

the expense of creating - an additional “source” and an additional “destination”

in the transportation problem , and the possibility of alternative optimal solutions

has been reduced considerably. The problem of alternati ve optimal solutions to

(3.3) is discussed in the next section along wi th statements of sufficient conditions

for alternati ve optimal solutions to exist.

• —•  - ---- --
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4. Al ternative Optimal Solutions

A disturbi ng aspect of LAV estimation for two-way tables is that alternative

optimal solutions frequently occur and , decidedly different estimates are obtainable.

This difficulty may be averted by specifying additional criteria for the estimates

to satisfy. It is the purpose of this section to indicate that alternati ve optimal

“fits” are to be expected in analyzing two-way tables via LAY procedures if (3.1)

is the sole criterion . This serves to emphasize the importance of “good” additional

criteria.

It is well known that the median of an even number of observations is unique

• only when the two middle observations have the same value. The parameters for

the one-way model (2.3) are obtained by taking the median of t sets of observa-

tions and the val ues will be unique only when al l t medi ans are unique.

However , a un ique solution can always be obtained by adding the additional

restrictions described in section 2.

Wi th respect to the two-way model , i t  can be shown that  an LP solution to

(3.5) is optimal if the 0 obtained by solving (3.11) satisfies L

• ~~1 � ~~ 1, i=1, 2, ..., r+c—1.

Furthermore , the basis B is a unique optimal basis only when

-1 < 1, 1=1, 2, ..., r+c-1;

in other words , an al ternative optimal basis exists if at the completion of the

algorithm e.~ equals -1 or +1 for any i. But because is a vector of 0’ s and

l’s , and because B is a unimodular matrix [18], 0 will always have integer

components. Hence, at optimality , 0.~ will equal either -1, +1 or 0. This means

that the current optimal basis is unique if and only if all the components of

0 are zero , and this will only be true when

- E~N~ = 0 (4. 1)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - ---S _ _
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CondItion (4.1) forms the foundation for proving the theorem of this section .

It might be wel l to point out at this time that all our results relate only to

al ternative optimal basic matric”s--not to alternative optimal fits. However,

an al ternative optimal basis is equivalent to an alternative optimal fit when-

ever an optimal fit interpolates exactly r+c-1 points. Theoretically, for fixed

sample size this will occur wi th probability one whenever the observations are

taken from a continuous population.

The following theorem is concerned with the special case of two-way classi-

fication model where n. .1 for all i and j .
13

Theorem 4.1. The LP problem (3.3), which is equivalent to the problem of

finding LAY estima tes for a two-way classification model wi th exactly one

observation per cell , wi ll have alternative optimal basic matrices whenever the

minimum of r and c is even .

Proof. Suppose that the LP problem has been solved and an optimal basic

matrix obtained. For this matrix to be a unique optimal basic matrix , condition

(4.1) must be satisfied . This occurs only if for each nonzero component from

an Nj : associated wi th a positi ve deviation there corresponds a nonzero component

from an N~ associated wi th a negative deviation . In other words , the nonbasic

rows of A must contain an even number of nonzero coefficients in each column

because summing an odd number of plus or minus ones will never yield zero. The

proof of the theorem will consist of showing that whenever the minimum of c or

r is even, there is at least one column with an odd number of nonzero components

(+1’ s) in the nonbasic rows.

For exp lanatory purposes , we assume r~c, but the proof fol lows in an

analogous manner if the reverse is true. There are r+c-1 rows of A in the basis

B and , because B forms a basis , every col umn of B must have at least one nonzero

entry . It Is noted that B is a submatrix of A and each row has one and only one 

-- -• - •• - • - - -~~~~~~~~ .• ~~~~• - --• • -
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nonzero entry in the first r components , and one and only one non-zero entry in

the last c components. A lso , each of the last c columns of A has exactly r

l’ s with the remaining coefficients being 0’ s. In order to satisfy (4.1)

there must be an even number of l’s in each of the last c columns of N.

Thus , since r is even , there must be an even number of l’s in these c columns

of B. But each column of B must have at least one nonzero entry, there must

be at least two l’s present. This would require B to have at least 2c > c + - •

r - 1 rows . Therefore , at least one of the last c col umns of B has a single

nonzero entry. The proof of the theorem now follows from the inability to

sati sfy (4.1).

It is not difficult to derive examples of two-way tables with a unique

optima l basis for the LP equivalent. Consider the two-way table of exhibit 1.

This example has a unique optimal basis matrix with the optimal fit interpolating

observations 3, 4, 5, 6, and 7. However, alternative optimal basic matrices

exist if the 6 and 8 interchange position. Certainly our computational 
- 

‘1

experience would indicate that, even if the conditions of theorem 4.1 are not

satisfied , alternative optimal fits are more likely to appear than not.

J Furthermore, a unique optimal basis matrix d4 es not clearly define the

estimates for the parameters. There are two degrees of freedom that provide

us with the ability to arbitrarily choose values for two parameters and remain

optimal . In the previous sections we have proposed additional criteria that 
•

deal with this problem, and we will discuss this matter further In the next

section via numerical examples.

1
~

-- - —- •- —•- -~~~~~~~ - •- - —-- • - --  • • -• -_—-•__-—-s



- - 
~~~~ —— -- -,•.~,.-- 

__

~~~~~ _~~~~~
_•_.— — •~~~~~~ -~~~1~~~~ ~~~~~~~~~~~~

;

- - - - - ~~~~~~~~~~~~ •~ - - - - -~~~ -

I

-17-

5.1 LAV Analysis of One-Way Table

.~
To illustrate the application of the algori thm described in Section 2,

we will use the Nebraska voting data shown in Exhibi t 2 [31 , chap. 19]. In

this section two separate one-way analyses will be carried out. These results

are used in Section 5.3 where the same data is used to Illustra te the LAY

analysis of a two-way table.

First, we consider the rows (i.e. counties). The median intervals are

shown in Exhibi t 3, and using the algorithm in Section 2, we obtain (L U)=

(325,342). Since the median p* 338 we set ~.i= 338 and obtain the fitted values

• and effects shown in the last two columns of Exhibit 3. The same procedure

• is then applied to the columns (i.e. years) and the fitted values and effects 
- • 

-

are shown In Exhibi t 4. 
- 

-

In the LSQ analysis the best estimates of the row and column effects

(along wi th the overall mean) provided the soluti on to the two-way analysis.

For the LAY analysis this is not true, but In Section 5.3 we propose obtaining —

the LAV esti mates for the two-way table that are as close as possible to these

restricted fi ts . It will then be possible to assess the relative importaflce

of the row effects afte r column effects have already been Included in the

model .
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5.2. Some Small Examples for Two-Way Tables

To i llus trate the difficul ties arising in choosing values for the

parameters in the two-way model , we consider the table gi ven by exhibit 5.

We begin the analysis by obtaining L~V estimates wi th the additiona l restric-

tions + 

~2 
= 0 and + 

~2 = 0. Optimal parameter values can be obtained

from the LP by considering any extreme point defining a hyper—plane passing

through three of the four observations. Thus, four optimal extreme point

solutions are possible and are given by exhibit 6. All optimal solutions

are given by convex combinations of these four points . Clearly, a great

deal of discrepancy is possible among optima l solutions . Considering only

extreme point solu tions, the observation which the hyperplane does not inter-

polate wi ll have a residual wi th absolu te val ue 998 and the other points wi ll ,

of course, have a zero residual . Thus, the LP solution could indica te any

one of the four observations to have an unduly large residual and make it a

candidate for consideration as an outlier.

If we perform the LAY analysis on the same table wi th addi ..ional cr1 -

ten on (3.3) rather than (2.2) and (3.2), a unique solution (31 = 1 ,, =

= = 
~2 = 0) is obtained . An inspection of the residuals now indicates

that the observation in cell (2,2) might be considered as an outlier.

The two by two table 0f exhibit 5 is an extreme case and was presented

to Indicate what could occur in the LAW analysis of two—way tables if

caution is not exercised. Generally, such widely divergent solutions

will not be available--regardless of the additional criteria employed

to absorb the degrees of freedom.

The next example (exhibit 7) is a four by four table from Tukey

[ 3]~ chp . 22]. With the additional criterion (3.3) appended to the —

~~~~~~~
-
~~~~‘-—— — -— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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problem, eight optimal extreme point solutions were found. These are given

in exhibit 8. The complete set of optimal extren~ point soluti ons can be 1.
generated (see [18] , p. 166); however , the amount of work required to do

so is generally prohibitive. No attempt was made to generate all optimal

extreme solutions to the two-way table In exhibit 7.

It is noted that all the solutions of exhibit 8 indicate the row A
effects being small relative to the column effects.~~Also, the residual

for the outlier of cell (3,2) is 270 for all but the last solution where

it is 271.

.4 1

4.

-1. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~ ——~~~~~~~~~~~~ -—~~~~~~~ — —- - - — —  •~~~—-- • •
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5.3 LAV- Analysis of a Two-Wa y Table

In Section 5.1 we considered the one-way analysis of the Nebraska voting

data. The two-way analysis of this data using LSQ is shown in Exhibit 9 .

The LAV estimates are obtained by solving (3.1) wi th the additional criterion

that we minimi ze

r c
+ E { t 1 - + 

~ ~~~
. - ~~~~~~~~ (5.1)

1=1 j=i ~

subject to the optimal value for z in (3.1) being maintained. In (5.1), the

* superscript denoted the LAY estimates that are obtained for the one-way fits ii
(see Section 5.). The robust elementary analysis obtained using LAY is shown

in Exhibit 10. The stem-and-leaf plots , hinges , midspreads, and side values

for the residuals obtained from the LSQ and LAY fi ts are shown in Exhibi t 11 ,

and the large (outside , i.e. past the side values) residuals are identified

in Exhibi t 12.

Tukey [31 , chap.19J obtained a resistant elementary analysis of this data

using pomedian pol ishing on the LSQ analysis (see Exhibit 13). The pomedian

procedure leads to residuals that are “nearly balanced” in sign in each row and

column . Note that the median of each row and column of the L~J residuals in

J Exhibit lOis zero.

5.4 Qual ity of Fit for Two-Way Table

In a LSQ analysis of a two-way table the importance of the row and

col umn effects is measured in terms of the decrease in the sum of squares

that occurs when the row (column) effects are included in the model . For

the LM analysis it is also possible to obtain an indication of the impor—

tance of the row and column effects. First , we obtain Z(p *) 
~~~ 

-

= 13661 Next calculate ~~ *,8*) = 6282, Z( p *,T *) = 12531 , and ~~(~~~,t ,8)

= 4240. Then using an approach suggested by McNeil and Tukey [26], we

_

~

Y

~

T

~

1

~ 

coharnn fit accounts for U~O( 1- ~ 282/i366i )2 j = 7 & 9%
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of the total variation, measured on a size-squared scale in terms of

the sum of the absolute deviations. Similarity , 15.9% of the total

variation is explained by the column Fit, and the row-p1~s-column fit

accounts for 90.4% of the total variation . Thus, we are able to conclude

that the size of the residuals is considerably reduced if both row and

column effects are included in the model .

As is the case In an unbalanced LSQ analysis the reduction in the

objective function that occurs when additional parameters are added to

the model is order dependent. Consequently, this heuristic approach to

evalua ting the relative importance of a given subset of parameters is

similar to the use of r2 values in the LSQ analysis. This approach is

suggested when the analysis is essentially exploratory in nature. We are,

on the one hand , prepared to obtain evidence that a simpler model may

adaquately fit the data. At the same time we are ready to look at the

residual s from a robust row-plus-column fit using diagnostic plots or

other techniques that could suggest that outliers are present, or that

an improved fit may be had by adding terms to the model or by reexpressing

the data .

L
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6. Discussion

It is generally recognized that after obtaining a simple row-plus-column

fit for a two-way table the residuals should be carefully analyzed. Gentleman

and Wilk [13] have considered the effect of one or two outliers superimposed

on a basic additive model wi th independent normal fluctuations wi th mean zero

and constant variance. Their results indicate that when one outlier is present

the judicious use of half-normal plotting provides a complete basis for data-

analytic judgements. They further find that di rect analysis of residuals

(from a LSQ fit) is not reliably indicati ve of the existence of peculiarities

when two outliers are present. Gentleman and Wilk [14] have also considered

the problem of mul ti ple outl iers, and proposed methods for identifi cation of

the “K most l ikely outlier subset” (where the maximum possible value of K

must be known). Their approach considers to what extent a p-parameter model

analysis can be statisti cally improved by selective reduction in the size (n)

of the data. Their method results in a LSQ analysis of the “good data” .

In many situations the form of the model is only tenative and a diagnostic

plot of the residuals is required [31]. The diagnostic plot may suggest that

an improved fit can be obtained by either adding to the model or reexpressing

the y ’s. When there are several possible departures from the ideal additi ve

model for a two-way table , the importance of obtaining a robust fit is increased

if attempts to improve upon the conventional LSQ analysis are to be successful .

Thus as McNeil and Tukey [26] have shown, it is possible to begin wi th a simple

row-plus-column fit of a two-way table using both LSQ and LAY . If the unknown

e1~ ’ s follow a Gaussian Distribution ; then we expect that the residuals from

both fits should appear to be near Gaussian , with somewhat less stretched tails

for the least square residuals. If the e1~ ’ s are from a tail-stretched distri-

bution , the residuals should be tail-stretched-—the LSQ residuals much less

-- -- - •
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than the e
~~’

s and the LAY residual s sl ightly more . Tail-stretched residual

distributions may also be the result of an inadaquate model . Consequently,

• if the LSQ and LAV anlayses are clearly different then further carefu l

analysis is required. It is important to npte as Mallows [25] has pointed

out , that our understanding of robust techniques and the behavior of the

residuals that they generate is limited. Certainly, the results presented

in this section indicate that good judgement must be applied by the data

analyst obtaining a sensible LAW fit.

H 
_ _ _ _ _
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5 6 7

4 8 1 .~~~~~~

3 2 9

Exhibi t 1. Two-way table wi th a
unique opti mal IP
basis matrix.

-

- - k . -~‘
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Exhibit 2. Nebraska Voting--Raw % Democratic for

11 Counties in 12 Presidential Elections (unit = .1%)

-
~ - 

- Year

County ‘20 ‘28 ‘36 ‘44 ‘52 ‘60

DO 353 358 589 757 544 365 345 
- 

337 189 167 236 396
Dl 323 252 236 669 396 267 238 25 7 149 148 138 290
Bi 288 302 305 619 510 397 372 411 234 268 279 389

• D2 379 372 270 606 497 363 388 433 196 223 251 399
D4 342 226 264 626 510 407 404 496 230 264 222 374
B4 270 291 247 569 450 354 325 374 218 259 229 410
D5 228 177 150 553 426 349 272 472 177 240 225 336
B5 270 237 227 561 425 352 340 360 179 232 189 310
06 265 196 165 547 472 336 313 436 195 219 226 388
B7 322 257 454 661 513 384 379 454 253 307 370 462
07 270 191 352 776 526 463 442 553 337 358 360 439

Source : Tukey , J. W. (1971). Exploratory Data Analysis , II. Addiso-Wesley ,

Exhibit 3. LAY One-Way Analysis of Counties

(i.e. rows of Exhibit 2) for the Nebraska Voting Data

County Median Interval Fit Effect

05 (240 ,272 ) 272 -66
Dl (252,257) 257 —81
06 (265 ,313) 313 -31

• B5 (270 ,310) 310 —28
B4 (291,325) 325 -13
B1 (305 ,372) 338 0
04 (342 ,374) 374 36
DO (353, 358) 358 20
D7 (360 ,439 ) 439 101
D2 (372,379) 379 41
B7 (379,384) 384 46

Note : The Order has been changed to illustrate the Procedure for
obtaining the interval  (L ,U) = (325,342).
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Exhibi.~~~ L~ One-Way Analysis of Years (i.e. columns)

- 
for the Nebraska Voting Data

- Year

‘20 ‘28 ‘36 ‘44 ‘52 ‘60

effect -50 -86 -74 281 159 25 7 95 -142 -98 -109 51
-

~ fit 288 252 264 619 497 363 345 433 196 240 229 389

I

:~
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1 1

1 999

Exhibi t 5. Sample two—way table with a single outlier.

Extreme point
solution 1

1 
12 8i 82

1 500 -499 499 0 0
2 1 -499 499 -499 499
3 500 0 0 -499 499

4 1 0 0 0 0

Exhibi t 6. Optimal extreme point solutions to the two-way
table of exhibi t 5 wi th the constraints + = 0

• and 8
~ 

+ 82 = 0 added.

--•----• - - - - • -  -~~- ---—----. --- ~~—- --~~~ --- ~~~~~~ — ,- -- -
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718 732 734 793
725 781 725 716

704 1035 763 758

726 765 738 761

Exhibit 7. Sample two-way table
from Tukey [28 chp.22 ].

Solution 1
1 ~~2 ~~3 

14 82 
. -

1 738 -4 -l 0 0 -12 27 0 20

2 742 -8 -1 0 0 -16 23 0 16

3 758 -4 -3 0 0 -30 7 -20 0

4 758 -8 -1 0 0 -32 7 -16 0

5 758 -4 0 0 0 -33 7 -20 0

6 738 -4 0 0 0 -13 27 0 20

7 741 -7 0 0 1 -16 23 0 17

• 8 758 -7 0 0 1 -33 6 -17 0

ExhibI t 8. Table of eight optimal extreme point solutions for the
L~~j  estimation problem obtained from exhibit 7. wIth
cri terion (3.3) added.

~ •i
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Exhibiti. Elementary Analysis by Means (i.e. LSQ) of the

Nebraska Voting Data. (unit = .1%) —

County ‘20 ‘28 ‘36 ‘44 ‘52 ‘60 eff fit

DO 15 61 255 88 27 -40 -40 -117 -63 -115 -49 -23 38 387
Dl 91 61 8 106 -14 -31 -41 -91 3 -28 -41 -23 -69 280
Bi -29 26 -7 -28 15 14 9 -21 4 8 16 -8 16 365
02 62 96 -42 -41 2 -20 25 0 -34 -37 -13 2 16 365
D4 26 -49 -47 -20 16 25 42 64 0 5 -41 -22 15 364
B4 -15 47 -33 -46 -13 3 -6 -27 20 31 -3 45 -15 334
05 -25 -35 -98 -30 -5 30 -27 104 11 44 26 3 -48 301
B5 11 19 —27 -28 -12 27 35 -15 7 30 -17 -29 -42 307
06 -O -28 -96 —49 29 5 2 55 16 11 14 42 -36 313
B7 —31 -55 105 -23 —19 —36 -21 -15 -14 10 70 28 53 402
07 -104 -142 -18 71 -26 23 21 63 49 40 39 -16 73 422

eff -48 -89 -53 283 130 18 -2 68 -135 -105 -101 32 349 0

fit 301 260 296 632 479 367 347 417 214 244 248 381 0 -349

Exhibit l0.Nebraska voting data from exhibit 2

ROBUST elementary analysis by LAV (unit = .1%)

Election

County ‘20 ‘28 ‘36 ‘44 ‘52 ‘60 eff fit

00 56 81 322 144 50 -3 0 -83 -30 -85~ -13 0 7 345
Dl 124 73 67 154 0 -3 -9 -65 28 -6 -13 -8 -91 247
Bl -25 9 22 -10 0 13 11 -25 -1 0 14 -23 23 361- J - D2 79 92 0 -10 0 -8 40 10 -26 -32 -l 0 10 348
D4 33 -63 -15 1 4 27 47 64 -l 0 —39 —34 19 357
B4 -7 34 0 -24 -24 6 0 -26 19 27 0 34 -13 325
05 -9 -40 -57 0 -8 41 -13 112 18 48 36 0 -53 285
B5 13 0 0 -12 -29 24 35 -20 0 20 -20 -46 -33 305
06 0 -49 -70 -34 10 0 0 48 8 -l 9 24 -25 313— 

~- . B7 -9 -54 153 14 -15 -18 0 0 0 21 87 32 41 379
D7 -122 -181 -10 68 -63 0 2 38 23 11 16 -52 102 440

eff -48 -68 -78 268 149 23 0 75 -126 -93 -96 51 338 0

-

• 

-

• 
fit 290 270 260 606 487 361 338 413 212 245 242 389 0 -338 
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Exhibi t 11. Analysis of The 132 Residuals Obtained

from the LSQ and LAV Two-way Analyses.

LSQ LAy1

~ 

1

9 - 5 4  11 -5 472
19 -4 9771580911 14 -4 096
28 -3 043914957 19 -3 40294
47 -2 9487809815062772229 29 -2 5449560603
60 -1 3932169543375 39 -1 0002333558
(7) -0 7360038 64 -O 7990000833890011060113000
65 0 0335923368524 (20) 0 09001004600002080009
52 1 51516749161254 48 1 34039098946
33 2 669573526 37 2 012344778
29 3 0151090 28 3 3458642
22 4 7255153 21 4 10788
15 55 16 560
14 6 21143 14 6 784
9 721 11 793
7 89 9 817
6 916 7 92
4 H HHHH 6 H HHHHHH

High Low High Low
256 -104 322 -181
107 -142 154 -122
107 —117 153
104 -114 144

124
112

-27h and +26 Hinges -13 and +23h
53h Mi dspread 36h

-81 and +79 Side Values -49h and 60
7 and Number Outside 11 and 14

rj
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Exhibit 12 Outside Residuals from row-plus-Column Fits Using
LSQ (see Exhi bits 9 and 11) and LAD (see Exhibits 10 and 11)

‘20. ‘28. . - ‘36. . ‘44. . ‘52. . ‘60.

LSQ

DO - . 255 88 . . . -11 7 . — 115 .

Dl 91 . . 106 . . . -91 . .
Bi - . . . . . . . . .
02 . 96 . . . . . . . . .

0 4 .  . . . . . . . . . *

84 . . . . . . . . . .

P 05 . . -98 - . . . 104 . .
-

• B5 . . . . . . . . . .

D6 . . -96 . . . . . . .
B7 - - 105 - . . . . . .

07 -104 142 - . . . . . . .

LAVr
DO . 81 322 144 - . . -83 . -85 -

Dl 124 73 67 154 - . . -65 . .
Bl . . . . . . . . .

02 79 92 . * . . . . .

0 4 .  -63 . . . . * 64 . .
B4 . . . . . . . . . . *

05 . - —57 . . . . 112 . .

B5 . . . . . . . * . .

D6 * - -70 * . . . . . .
B7 . —54 153 . . . - . . . 8 7 .
D7 -122 -181 - 68 —63 . - . . .

*

- -•  - - -  -_ •••_ ••
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